326 research outputs found

    The Correspondence between Convergence Peaks from Weak Lensing and Massive Dark Matter Haloes

    Full text link
    The convergence peaks, constructed from galaxy shape measurement in weak lensing, is a powerful probe of cosmology as the peaks can be connected with the underlined dark matter haloes. However the capability of convergence peak statistic is affected by the noise in galaxy shape measurement, signal to noise ratio as well as the contribution from the projected mass distribution from the large-scale structures along the line of sight (LOS). In this paper we use the ray-tracing simulation on a curved sky to investigate the correspondence between the convergence peak and the dark matter haloes at the LOS. We find that, in case of no noise and for source galaxies at zs=1z_{\rm s}=1, more than 65%65\% peaks with SNR≥3\text{SNR} \geq 3 (signal to noise ratio) are related to more than one massive haloes with mass larger than 1013M⊙10^{13} {\rm M}_{\odot}. Those massive haloes contribute 87.2%87.2\% to high peaks (SNR≥5\text{SNR} \geq 5) with the remaining contributions are from the large-scale structures. On the other hand, the peaks distribution is skewed by the noise in galaxy shape measurement, especially for lower SNR peaks. In the noisy field where the shape noise is modelled as a Gaussian distribution, about 60%60\% high peaks (SNR≥5\text{SNR} \geq 5) are true peaks and the fraction decreases to 20%20\% for lower peaks (3≤SNR<5 3 \leq \text{SNR} < 5). Furthermore, we find that high peaks (SNR≥5\text{SNR} \geq 5) are dominated by very massive haloes larger than 1014M⊙10^{14} {\rm M}_{\odot}.Comment: 13 pages, 11 figures, 4 tables, accepted for publication in MNRAS. Our mock galaxy catalog is available upon request by email to the author ([email protected]

    Combined key-frame extraction and object-based video segmentation

    Full text link
    • …
    corecore